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There is a disconnect between data-intensive analytical tools
and traditional database management systems. Data scien-
tists using these tools often prefer to manually manage their
data by storing it either as structured text (such as CSV or
XML files), or as binary files [5]. This approach of managing
data introduces a lot of problems, especially when a large
amount of data from different sources has to be managed.
Flat file storage requires tremendous manual effort to main-
tain, and is often difficult to reason about because of the
lack of a rigid schema. Furthermore, the data is prone to
corruption because of lack of transactional guarantees and
atomic write actions.
Another consequence of this disconnect is that data sci-

entists have re-implemented many common database op-
erations inside popular scripting languages rather than us-
ing a database to perform these actions. Libraries such as
dplyr [10] and Pandas [6] re-implement most standard data-
base operations, such as joins and aggregations. However,
these libraries suffer from having to load all required data
and intermediates into memory. This leads to frequent out
of memory problems or poor performance due to swapping.

All these issues could be solved by combining an efficient
analytical RDBMS with these tools. The RDBMS can prevent
data corruption through ACID properties, it can automati-
cally manage data storage for the user and make data easier
to reason about by enforcing a rigid schema. In addition,
the RDBMS can perform efficient execution on larger-than-
memory data by only loading required columns.
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(a) Socket connection.

(b) In-database processing. (c) Embedded database.

Figure 1. Different ways of connecting analytical tools with
a database management system.

However, the current methods of using standard RDBMSes
in conjunction with analytical tools are lacking. The stan-
dard approach is to run the database as a separate process
(the “database server”) and connecting the analytical tool
with it through a socket connection (as a “database client”).
The analytical tool can then issue queries to the database,
after which the server will transfer the query results to the
client through the socket. This approach has several issues.
Firstly, maintaining a database server requires significant
manual effort from the user. The database server must be
installed, tuned and continuously maintained. Secondly, com-
municating with a database through a socket connection falls
short when a large amount of data is involved. The data has
to be transferred to and from the analytical tool through
a socket connection, which is inefficient in current major
database systems [8], even when the database server and the
analytical tool reside on the same machine.
Additionally, writers of scripts in analytical languages

such as R or Python prefer writing portable scripts that
they can share with other data scientists. Scripts containing
references to external tools such as database management
systems are challenging to port to other systems, and as such
cannot be included in these scripts.
An alternative solution is to use in-database processing

methods [7]. By executing the analysis pipelines inside the
database, the overhead of data export can be avoided. While
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(a) Transfer data from database to client. (b) Run TPCH-Q1 inside the database. (c)Move data from the client to the database.

Figure 2. Experimental results.

this approach removes the data transfer overhead between
the scripting language and the database, it still requires the
user to run and manage a separate database server. These
user-defined functions also introduce new issues. They force
users to rewrite code so the code fits within the query work-
flow, are difficult to debug [3] and introduce safety issues as
arbitrary code can now run within the database kernel.
Another solution is to embed the database directly into

the scripting language. As the database lives in the same ad-
dress space as the scripting language, data can be transferred
between the two systems without any overhead. Embedded
databases are popular, mainly because of the omnipresent
SQLite [2]. However, SQLite is designed for OLTP workloads.
While popular analytical tools do have SQLite bindings, it
does not perform well when used for analytical purposes.

In this work, we introduceMonetDBLite1, an Open-Source
embedded database based on the popular columnar database
MonetDB [4]. It is an in-process analytical database that can
be run directly from within popular analytical tools without
any external dependencies. It can be installed through the
default packagemanagers of popular analytical tools, and has
bindings for C/C++, R, Python and Java. In addition, because
of its in-process nature, data can be transferred between the
database and these analytical tools at zero cost.

Evaluation. In order to test the effectiveness of our sys-
tem we compare it against current solutions for combining
analytical tools with database systems in three different im-
portant areas:

1. Transfer of data from the database to the client process.
2. Execution of analytical queries within the database.
3. Transfer of data from the client process to the database.
The systems used for comparison are (1) the databases

PostgreSQL [9] and MonetDB [4] connected through a client
connector, and (2) SQLite [2] running embedded inside the
client process. The benchmarks were run using an R shell
as the client process, and were run on a machine running
Fedora 26 with an Intel i7-2600K with 8 Cores running at 3.4
GHz and 16GB of Main Memory.
1The source code of MonetDBLite is available here:
https://github.com/hannesmuehleisen/MonetDBLite

Transfer To Client. In this benchmark, we transfer the
lineitem table from the TPC-H benchmark [1] from the
database to the client process.
In Figure 2a, the transfer time from the database to the

client process is shown. We can see that MonetDBLite per-
forms an order of magnitude better than the competing sys-
tems. This because it both runs inside the client process,
meaning data does not have to be transferred over a socket,
and data is stored in columnar format much like it is inside
the scripting languages. This allows for fast transfer of data.
MonetDB shows good performance on this benchmark

compared to the other databases. This is because MonetDB
uses a client protocol optimized for bulk transfer of data
in columnar format [8]. Meanwhile, both SQLite and Post-
greSQL are doing poorly because they have to convert from
a row-based to a columnar format.

Execution of analytical queries. In this benchmark, we
run Q1 of the TPC-H benchmark inside the database server
and transfer the result to the client.
In Figure 2b, the execution time of TPC-H Q1 within the

database is shown. This query has a small result set, hence
transfer time from the database to the client is not a bottle-
neck. Because of that MonetDBLite and MonetDB have iden-
tical performance. We can see that PostgreSQL and SQLite
perform significantly worse than MonetDB. This is because
they are row-store databases designed for OLTP workloads.

Transfer ToDatabase. In this benchmark, we again trans-
fer the lineitem table, but this time from the client to the
server and store it persistently within the database.

In Figure 2c, the results of this benchmark are shown. We
can see that both MonetDB and PostgreSQL perform very
poorly here. This is because the data is transferred over a
socket connection and individual rows are transferred using
INSERT INTO statements, which then have to be parsed back
into binary data. Both SQLite and MonetDBLite perform
much better on this benchmark, and show very similar per-
formance. The main bottleneck for these systems is writing
the data to disk.
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